

Inclusive B-Meson Decays from Lattice QCD

William I. Jay (Fermilab) and Thomas DeGrand (CU Boulder) Rare Processes and Precision Frontier Townhall — 10/2/2020

Lattice-QCD studies of inclusive B-meson decays

Snowmass Topical Groups: (check all that apply □/■)

- \blacksquare (RF1) Weak decays of b and c quarks
- (TF02) Effective field theory techniques
- (TF05) Lattice gauge theory
- (TF06) Theory techniques for precision physics
- (TF07) Collider phenomenology
- (CompF2) Theoretical Calculations and Simulation

Contact Information:

Thomas DeGrand (Department of Physics, University of Colorado) [thomas.degrand@colorado.edu] William I. Jay (Theoretical Physics Department, Fermilab) [wjay@fnal.gov]

Link to LOI

Inclusive B-Meson Decays from Lattice QCD

William I. Jay (Fermilab) and Thomas DeGrand (CU Boulder) Rare Processes and Precision Frontier Townhall — 10/2/2020

Experimental Tension

Tension in inclusive vs. exclusive determinations of

- IV_{cb}I from B \rightarrow D* $\ell\nu$ has 3.3 σ tension
- IV_{cb}I from B \rightarrow D $\ell\nu$ has 2.0 σ tension
- IV_{ub}I from B $\rightarrow \pi \ell \nu$ has 2.8 σ tension

Image credit: Bouchard, Cao, Owen, arXiv:1902.09412

Experimental Tension

Tension in inclusive vs. exclusive determinations of

- IV_{cb}I from B \rightarrow D* $\ell\nu$ has 3.3 σ tension
- IV_{cb}I from B \rightarrow D $\ell\nu$ has 2.0 σ tension
- IV_{ub}I from B $\rightarrow \pi \ell \nu$ has 2.8 σ tension

The most precise theoretical calculations employ different theoretical frameworks

- Inclusive decays: continuum heavy quark EFT + operator product expansion
- Exclusive decays: numerical lattice gauge theory

The CKM Matrix on the Lattice

Leptonic decays

Semi-leptonic decays

Meson Mixing

Exclusive Semi-leptonic Decays

Via numerical lattice QCD

(form factors) ∝ (matrix elements)

$$f_J(p) \propto \langle \text{final} | J(p) | \text{initial} \rangle$$

- Methodology is well established
- Systematic effects are well understood
- Calculations are underway using physical quark masses: u, d, s, c, and b.
- Coming soon:
- » B-meson decay form factors at the 1% level
- » D-meson decay form factors at sub-percent level

The physics of Euclidean correlation functions:

- 2-point functions: masses, decay constants
- 3-point functions: form factors
- 4-point functions:
 - Flavor physics: Inclusive B-meson decays
 - Kaon physics: K_L-K_S mixing, ε_K, rare kaon decays
 - Neutrino physics: 0vββ-decay
 - Hadron structure: "hadronic tensor" H_{μν}

The physics of Euclidean correlation functions

- 2-point functions: masses, decay constants
- 3-point functions: form factors
- 4-point functions:

Sum over all hadronic final states X

The physics of Euclidean correlation functions

- 2-point functions: masses, decay constants
- 3-point functions: form factors

The physics of Euclidean correlation functions

- 2-point functions: masses, decay constants
- 3-point functions: form factors
- 4-point functions:

Automatic sum over intermediate states X

"Hadronic tensor"

∋ structure functions

Proposals for Inclusive B-decays

There have been several recent proposals for calculating inclusive decays using numerical lattice QCD

- Hashimoto PTEP (2017) 5, 053B03, arXiv:1703.01881
- Hansen, Meyer, Robaina: PRD 96 (2017) 9, 094513.
 arXiv:1704.08993
- Gambino and Hashimoto: PRL 125 (2020) 3, 032001.
 arXiv:2005.13730
- + proceedings from recent lattice conferences

Two technical challenges

- 4pt functions are numerically challenging
 - Techniques do exist already
 - Community rapidly developing new efficient techniques
- The Euclidean calculation occurs for spacelike kinematics
 - Analytic continuation is required to the physical region
 - A numerically delicate inverse transform is necessary
 - Also needed for lattice PDFs
 - A variety of options have been proposed: Backus-Gilbert, Bayesian reconstruction, Bayes-Gauss-Fourier transform, Maximum Entropy Methods, decomposition with Chebyshev polynomials, ...

The inverse problem

 "Wick rotation" back to Minkowski space from discrete Euclidean data is an ill-posed inverse problem

The inverse problem

 "Wick rotation" back to Minkowski space from discrete Euclidean data is an ill-posed inverse problem

Must augment problem with additional physics knowledge: smoothness, regularity, etc...

 $G_i = T_{ij}
ho_j$ III-posed because T_{ij} $T_{ij} = \Delta \omega K_i(\omega_j)$ is not square (i«j)

The inverse problem

- "Wick rotation" back to Minkowski space from discrete Euclidean data is an ill-posed inverse problem
- Which methods work best? What are their limitations in principle and in practice?
- Transforming / smearing existing experimental data may allow for more direct comparison to lattice results. For example:
 - Poggio, Quinn, and Weinberg PRD 13:1958 (1976)

Summary

- Understanding the discrepancy between inclusive and exclusive determinations of CKM elements is a longstanding problem
- Frontier calculations using numerical lattice QCD will determine matrix elements for inclusive decays of Bmesons non-perturbatively
- The techniques developed will have broad applications throughout lattice QCD, e.g., in hadronic structure
- Reaching physical kinematics from Euclidean space requires solving a delicate inverse problem
- Look for important progress over the next 5-10 years.